Optimal Unilateral Carbon Policy

Samuel Kortum Yale University

Joint with David Weisbach, University of Chicago Law School

27th Conference on Global Economic Analysis Colorado State University June, 2024

Policy Dilemma

- Emissions of CO₂ generate a *global externality*
 - harm doesn't depend on where emissions originate •

Policy Dilemma

- Emissions of CO₂ generate a *global externality*
 - harm doesn't depend on where emissions originate •
- Optimal allocation can be implemented with a globally harmonized carbon price lacksquare
 - little progress toward that ideal due to free-rider problem ullet

- Emissions of CO₂ generate a *global externality* lacksquare
 - harm doesn't depend on where emissions originate ullet
- Optimal allocation can be implemented with a globally harmonized carbon price \bullet
 - little progress toward that ideal due to free-rider problem \bullet
- What can a coalition of countries "Home" do on its own? A stylized analysis!
 - solve for Home's ideal allocation in a DFS trade model, given Foreign price-taking behavior
 - analyze taxes and subsidies that implement this unilaterally optimal allocation

Foundations

Build on Markusen (1975) externalities, trade in dirty good, and unilateral policy •

- Build on Markusen (1975) externalities, trade in dirty good, and unilateral policy \bullet
- Combine with Dornbusch, Fischer, and Samuelson (DFS, 1977) trade in differentiated goods produced with energy

- Build on Markusen (1975) externalities, trade in dirty good, and unilateral policy ullet
- Combine with Dornbusch, Fischer, and Samuelson (DFS, 1977) trade in differentiated goods produced with energy
- Strategy of Costinot, Donaldson, Vogel, and Werning (CDVW, 2015) lacksquareprimal approach to derive optimal unilateral trade policy in DFS

- Build on Markusen (1975) externalities, trade in dirty good, and unilateral policy
- Combine with Dornbusch, Fischer, and Samuelson (DFS, 1977) trade in differentiated goods produced with energy
- Strategy of Costinot, Donaldson, Vogel, and Werning (CDVW, 2015) primal approach to derive optimal unilateral trade policy in DFS
- Follow Böhringer, Lange, and Rutherford (2014); Keen and Kotsogiannis (2014) • policy can't reduce Foreign's welfare; must be Pareto improving

Preferences and Technology

Home welfare quasi-linear; global social cost of carbon (SCC) $\varphi^W = \varphi + \varphi^*$

$$U = C_{s} + \int_{0}^{1} u(c_{j})dj + v(C_{e}^{d}) - \varphi Q_{e}^{W}$$

- Services produced 1-to-1 with labor, costlessly traded (numeraire) •
- Goods produced with labor and energy with efficiency a_j , a_i^* ; iceberg trade costs
- Fossil-fuels extracted at increasing labor cost $a(Q_e)$, $a^*(Q_e^*)$; $Q_e + Q_e^* = Q_e^W$

Goods Trade in BAU (SCC = 0)

- Planner wants to maximize global welfare (Pareto-improving policy)
 - but can't directly control activities in Foreign
- Decisions in Foreign guided by global energy price p_{e} \bullet
 - in Home guided by shadow value of energy λ_{ρ}
- Expected unit production costs in Foreign and Home $a_i^*g(p_e), a_jg(\lambda_e)$

Planner's Problem

• function g(p) combines energy cost (p) and labor cost (1); g'(p) dictates energy intensity

- Massive Lagrangian! lacksquare
- First solve the inner problem as in CDVW (optimize for each good j)
- Then solve the outer problem to determine aggregates p_{e} , λ_{e} , Q_{e} , C_{e}^{d} \bullet
- Present results in reverse order lacksquare
 - outer problem is like Markusen, with key policy implication
 - inner problem for Home consumption is like CDVW
 - inner problem for Foreign consumption is more novel \bullet

Solution to Outer Problem

Energy price splits the Pigouvian wedge \bullet

extraction wedge

$$\left(p_e - (\lambda_e - \varphi^W)\right) \frac{\partial Q_e^*}{\partial p_e} = (\lambda_e - p_e) \left| \frac{\partial Q_e^*}{\partial p_e} \right|$$

extraction wedge

consumption wedge

consumption wedge

 $\left|\frac{\partial C_e^{z^*}}{\partial p_e}\right| + \int_{j_s}^{j_x} \left(\tau a_j g(\lambda_e) - a_j^* g(p_e)\right) \left|\frac{\partial x_j}{\partial p_e}\right| dj$

export wedges

 $C_e^{z^*} = C_e^{d^*} + C_e^{y^*}$

Solution to Outer Problem

Energy price splits the Pigouvian wedge lacksquare

$$\lambda_e - \varphi^W \\ \frac{1}{\varphi^W} \\ \frac{1}$$

$$\left(p_e - (\lambda_e - \varphi^W)\right) \frac{\partial Q_e^*}{\partial p_e} = (\lambda_e - p_e) \left| \frac{\partial Q_e^*}{\partial p_e} \right|$$

extraction wedge

consumption wedge

export wedges

Home

0

Foreign

Home

Supply and Demand

Implement with Taxes

Home

Tax both Supply and Demand

Home

0 _____

Foreign

$$A(j_m) = \frac{1}{\tau^*} \qquad \qquad A(j_s) =$$

Solution to Inner Problem

$$A(j_m) = \frac{1}{\tau^*} \qquad \qquad A(j_s) =$$

Solution to Inner Problem

Interpretation: Border Adjustment

- Border adjustments (per unit of CO₂) lacksquare
- Applies to imports and exports of energy, imports of goods (but not exports of goods) \bullet
 - keep import margin unchanged from BAU; CDVW logic \bullet

- Border adjustments (per unit of CO₂)
- Applies to imports and exports of energy, imports of goods (but not exports of goods)
 - keep import margin unchanged from BAU; CDVW logic \bullet
- It's partial: some tax remains on energy extraction, not just consumption
 - lower border adjustment means higher extraction tax, raising global energy price \bullet
 - low BA optimal if Foreign supply response low or demand response high; Markusen logic \bullet

Interpretation: Export Policy

Interpretation: Export Policy

- No border adjustments on goods exports; output subsidies for •
 - exports in which Home's comparative advantage is weak

Interpretation: Export Policy

- No border adjustments on goods exports; output subsidies for
 - exports in which Home's comparative advantage is weak
- Exporters still face carbon tax, retaining incentive for clean production \bullet
 - competitiveness ensured through subsidies for marginal exports
 - subsidy is per unit exported so doesn't undercut carbon tax; Fischer and Fox logic
 - subsidy expands the Home's export margin from BAU; can even lead to cross hauling

Policies Proposed and Implemented

Policies Proposed and Implemented

- Bill lingering in Congress: "Energy Innovation and Carbon Dividend Act of 2021"
 - structure similar, starts with tax on extraction, but imposes full border adjustments
 - so no effective tax on US fossil fuel extraction

Policies Proposed and Implemented

- Bill lingering in Congress: "Energy Innovation and Carbon Dividend Act of 2021" ullet
 - structure similar, starts with tax on extraction, but imposes full border adjustments
 - so no effective tax on US fossil fuel extraction
- EU's Emission Trading System and Carbon Border Adjustment Mechanism (CBAM) \bullet
 - carbon price hits producers: should shift burden to extraction by subsidizing energy imports!
 - CBAM follows the optimal unilateral policy: BA on imports with no rebate on exports •
 - even closer if marginal exporters got free permits; mimics an output subsidy for exports \bullet

• Tax energy extraction: tax per unit of carbon equals global SCC

- Tax energy extraction: tax per unit of carbon equals global SCC
- Partial border adjustments on carbon content of energy

- Tax energy extraction: tax per unit of carbon equals global SCC
- Partial border adjustments on carbon content of energy
 - tax energy imports or rebate tax on exports < extraction tax rate
 - pushes only part of the tax downstream from extractors to producers

- Tax energy extraction: tax per unit of carbon equals global SCC
- Partial border adjustments on carbon content of energy
 - tax energy imports or rebate tax on exports < extraction tax rate
 - pushes only part of the tax downstream from extractors to producers
- Same partial BAs on carbon content of goods imports

- Tax energy extraction: tax per unit of carbon equals global SCC
- Partial border adjustments on carbon content of energy
 - tax energy imports or rebate tax on exports < extraction tax rate
 - pushes only part of the tax downstream from extractors to producers
- Same partial BAs on carbon content of goods imports
 - import margin unchanged relative to no policy

- Tax energy extraction: tax per unit of carbon equals global SCC
- Partial border adjustments on carbon content of energy
 - tax energy imports or rebate tax on exports < extraction tax rate
 - pushes only part of the tax downstream from extractors to producers
- Same partial BAs on carbon content of goods imports
 - import margin unchanged relative to no policy
- No BAs for exports of goods; instead an output subsidy for marginal exporters

- Tax energy extraction: tax per unit of carbon equals global SCC
- Partial border adjustments on carbon content of energy
 - tax energy imports or rebate tax on exports < extraction tax rate
 - pushes only part of the tax downstream from extractors to producers
- Same partial BAs on carbon content of goods imports
 - import margin unchanged relative to no policy
- No BAs for exports of goods; instead an output subsidy for marginal exporters
 - export margin expands relative to no policy

- Choose convenient functional forms with constant elasticities \bullet
- Calibrate to actual carbon flows, taking Home = OECD •
- Choose a few additional parameters for trade elasticity, etc. ullet
- Compute optimal policy for different values of global SCC lacksquare
 - value of $\varphi^W = 1$ is approximately \$150/ton of CO2

Quantitative Version

• Gigatonnes of CO₂ in 2018 (IEA and OECD TECO₂) with Home as the OECD

	Home	Foreign	Direct	Total
Home	$C_{e}^{y} = 8.7$	$C_{e}^{m} = 2.5$	$C_{e}^{d} = 2.5$	$C_{e} = 13.7$
Foreign	$C_{e}^{x} = 1.0$	$C_e^{y*} = 16.7$	$C_{e}^{d*} = 2.2$	$C_{e}^{*} = 19.9$
Direct	$C_{e}^{d} = 2.5$	$C_{e}^{d*} = 2.2$		
Total	$G_e = 12.2$	$G_{e}^{*} = 21.4$		$C_{e}^{W} = 33.6$
Extraction	$Q_{e} = 9.3$	$Q_e^* = 24.3$		$Q_e^W = 33.6$

Carbon in the World

Optimal Policy for the OECD

5
$$\epsilon_{s} = 0.5, \epsilon_{s}^{*} = 2$$

- Stylized theory reveals basic logic of optimal unilateral carbon policy
 - combination of BAs matters, and trade can expand the reach of policy

- Stylized theory reveals basic logic of optimal unilateral carbon policy
 - combination of BAs matters, and trade can expand the reach of policy
- Practical policy prescription: combine supply-side and demand-side taxes

- Stylized theory reveals basic logic of optimal unilateral carbon policy ullet
 - combination of BAs matters, and trade can expand the reach of policy
- Practical policy prescription: combine supply-side and demand-side taxes
- Much is left to be explored with richer quantitative models! \bullet

